Skip to content

Inference

Inference is the process that consists in computing new probabilistc information from a Bayesian network and some evidence. aGrUM/pyAgrum mainly focus on the computation of (joint) posterior for some variables of the Bayesian networks given soft or hard evidence that are the form of likelihoods on some variables. Inference is a hard task (NP-complete). aGrUM/pyAgrum implements exact inference but also approximated inference that can converge slowly and (even) not exactly but thant can in many cases be useful for applications.

Lazy Propagation is the main exact inference for classical Bayesian networks in aGrUM/pyagrum.

Class used for Lazy Propagation

LazyPropagation(bn) -> LazyPropagation : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a list of nodes as a new joint target. As a collateral effect, every node is added as a marginal target.

  • Parameters:
    • list – a list of names of nodes
    • targets (object)
  • Raises: pyagrum.UndefinedElement – If some node(s) do not belong to the Bayesian network
  • Return type: None

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined joint targets.

  • Return type: None

Clear all the previously defined marginal targets.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the joint target.

  • Parameters:
    • list – a list of names or Ids of nodes
    • targets (object)
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

Create a pyagrum.Tensor for P(joint targets|evs) (for all instanciation of targets and evs)

  • Parameters:
    • targets (List [**intstr ]) – a list of node Ids or node names
    • evs (Set [**intstr ]) – a set of nodes ids or names.
  • Returns: a Tensor for P(target|evs)
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.Exception – If some evidene entered into the Bayes net are incompatible (their joint proba = 0)
  • Returns: the probability of evidence
  • Return type: float

returns the number of threads used by LazyPropagation during inferences.

  • Returns: the number of threads used by LazyPropagation during inferences
  • Return type: int
  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network

Indicates whether LazyPropagation currently overrides aGrUM’s default number of threads (see method setNumberOfThreads).

  • Returns: A Boolean indicating whether LazyPropagation currently overrides aGrUM’s default number of threads
  • Return type: bool
  • Parameters:
    • list – a list of nodes ids or names.
    • targets (object)
  • Returns: True if target is a joint target.
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Parameters: targets (object)
  • Return type: float

Compute the joint posterior of a set of nodes.

  • Parameters: list – the list of nodes whose posterior joint probability is wanted

Warning

The order of the variables given by the list here or when the jointTarget is declared can not be assumed to be used by the Tensor.

  • Returns: a const ref to the posterior joint probability of the set of nodes.
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: targets (object)
  • Returns: the list of target sets
  • Return type: list

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None

Find the Most Probable Explanation (MPE) given the evidence (if any) added into LazyPropagation

  • Returns: An instantiation of all the variables of the Bayes net representing the Most Probable Explanation.
  • Return type: pyagrum.Instantiation

Find the Most Probable Explanation (MPE) given the evidence (if any) added into LazyPropagation as well as the log2 of its posterior probability

  • Returns: A tuple with the instantiation of all the variables of the Bayes net representing the Most Probable Explanation and the log2 of its posterior probability
  • Return type: Tuple[pyagrum.Instantiation, float]
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of joint targets
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network

sets an upper bound on the memory consumption admissible

  • Parameters: gigabytes (float) – this upper bound in gigabytes.
  • Return type: None

If the argument nb is different from 0, this number of threads will be used during inferences, hence overriding aGrUM’s default number of threads. If, on the contrary, nb is equal to 0, the parallelized inference engine will comply with aGrUM’s default number of threads.

  • Parameters: nb (int) – the number of threads to be used by ShaferShenoyMRFInference
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:

class pyagrum.ShaferShenoyInference(*args)

Section titled “class pyagrum.ShaferShenoyInference(*args)”

Class used for Shafer-Shenoy inferences.

ShaferShenoyInference(bn) -> ShaferShenoyInference : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a list of nodes as a new joint target. As a collateral effect, every node is added as a marginal target.

  • Parameters:
    • list – a list of names of nodes
    • targets (object)
  • Raises: pyagrum.UndefinedElement – If some node(s) do not belong to the Bayesian network
  • Return type: None

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined joint targets.

  • Return type: None

Clear all the previously defined marginal targets.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the joint target.

  • Parameters:
    • list – a list of names or Ids of nodes
    • targets (object)
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

Create a pyagrum.Tensor for P(joint targets|evs) (for all instanciation of targets and evs)

  • Parameters:
    • targets (List [**intstr ]) – a list of node Ids or node names
    • evs (Set [**intstr ]) – a set of nodes ids or names.
  • Returns: a Tensor for P(target|evs)
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.Exception – If some evidene entered into the Bayes net are incompatible (their joint proba = 0)
  • Returns: the probability of evidence
  • Return type: float

returns the number of threads used by LazyPropagation during inferences.

  • Returns: the number of threads used by LazyPropagation during inferences
  • Return type: int
  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network

Indicates whether LazyPropagation currently overrides aGrUM’s default number of threads (see method setNumberOfThreads).

  • Returns: A Boolean indicating whether LazyPropagation currently overrides aGrUM’s default number of threads
  • Return type: bool
  • Parameters:
    • list – a list of nodes ids or names.
    • targets (object)
  • Returns: True if target is a joint target.
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Parameters: targets (object)
  • Return type: float

Compute the joint posterior of a set of nodes.

  • Parameters: list – the list of nodes whose posterior joint probability is wanted

Warning

The order of the variables given by the list here or when the jointTarget is declared can not be assumed to be used by the Tensor.

  • Returns: a const ref to the posterior joint probability of the set of nodes.
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: targets (object)
  • Returns: the list of target sets
  • Return type: list

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of joint targets
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network

sets an upper bound on the memory consumption admissible

  • Parameters: gigabytes (float) – this upper bound in gigabytes.
  • Return type: None

If the argument nb is different from 0, this number of threads will be used during inferences, hence overriding aGrUM’s default number of threads. If, on the contrary, nb is equal to 0, the parallelized inference engine will comply with aGrUM’s default number of threads.

  • Parameters: nb (int) – the number of threads to be used by ShaferShenoyMRFInference
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:

Class used for Variable Elimination inference algorithm.

Warning

Even if this inference has the same API than the other (exact) inferences, its mode of operation is different and is specifically dedicated to the calculation of a single posterior. Any other use (for instance for multiple targets) is possibly inefficient.

VariableElimination(bn) -> VariableElimination : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a list of nodes as a new joint target. As a collateral effect, every node is added as a marginal target.

  • Parameters:
    • list – a list of names of nodes
    • targets (object)
  • Raises: pyagrum.UndefinedElement – If some node(s) do not belong to the Bayesian network
  • Return type: None

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the joint target.

  • Parameters:
    • list – a list of names or Ids of nodes
    • targets (object)
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

Create a pyagrum.Tensor for P(joint targets|evs) (for all instanciation of targets and evs)

  • Parameters:
    • targets (List [**intstr ]) – a list of node Ids or node names
    • evs (Set [**intstr ]) – a set of nodes ids or names.
  • Returns: a Tensor for P(target|evs)
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.Exception – If some evidene entered into the Bayes net are incompatible (their joint proba = 0)

returns the number of threads used by LazyPropagation during inferences.

  • Returns: the number of threads used by LazyPropagation during inferences
  • Return type: int
  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network

Indicates whether LazyPropagation currently overrides aGrUM’s default number of threads (see method setNumberOfThreads).

  • Returns: A Boolean indicating whether LazyPropagation currently overrides aGrUM’s default number of threads
  • Return type: bool
  • Parameters:
    • list – a list of nodes ids or names.
    • targets (object)
  • Returns: True if target is a joint target.
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Parameters: targets (object)
  • Return type: float

Compute the joint posterior of a set of nodes.

  • Parameters: list – the list of nodes whose posterior joint probability is wanted

Warning

The order of the variables given by the list here or when the jointTarget is declared can not be assumed to be used by the Tensor.

  • Returns: a const ref to the posterior joint probability of the set of nodes.
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: targets (object)
  • Returns: the list of target sets
  • Return type: list

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network

sets an upper bound on the memory consumption admissible

  • Parameters: gigabytes (float) – this upper bound in gigabytes.
  • Return type: None

If the argument nb is different from 0, this number of threads will be used during inferences, hence overriding aGrUM’s default number of threads. If, on the contrary, nb is equal to 0, the parallelized inference engine will comply with aGrUM’s default number of threads.

  • Parameters: nb (int) – the number of threads to be used by ShaferShenoyMRFInference
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:

Class used for inferences using loopy belief propagation algorithm.

LoopyBeliefPropagation(bn) -> LoopyBeliefPropagation : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class for making Gibbs sampling inference in Bayesian networks.

GibbsSampling(bn) -> GibbsSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None
  • Returns: size of burn in on number of iteration
  • Return type: int

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Returns: True if variables are drawn at random
  • Return type: bool
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of variable drawn at each iteration
  • Return type: int
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: b (int) – size of burn in on number of iteration
  • Return type: None
  • Parameters: _atRandom (bool) – indicates if variables should be drawn at random
  • Return type: None
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: _nbr (int) – the number of variables to be drawn at each iteration
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class used for Monte Carlo sampling inference algorithm.

MonteCarloSampling(bn) -> MonteCarloSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class used for Weighted sampling inference algorithm.

WeightedSampling(bn) -> WeightedSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class used for inferences using the Importance Sampling algorithm.

ImportanceSampling(bn) -> ImportanceSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class used for inferences using a loopy version of importance sampling.

LoopyImportanceSampling(bn) -> LoopyImportanceSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None
  • Returns: size of burn in on number of iteration
  • Return type: int

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Returns: True if variables are drawn at random
  • Return type: bool
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of variable drawn at each iteration
  • Return type: int
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: b (int) – size of burn in on number of iteration
  • Return type: None
  • Parameters: _atRandom (bool) – indicates if variables should be drawn at random
  • Return type: None
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: _nbr (int) – the number of variables to be drawn at each iteration
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Parameters: vlbpsize (float) – the size of the virtual LBP
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class used for inferences using a loopy version of importance sampling.

LoopyImportanceSampling(bn) -> LoopyImportanceSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Parameters: vlbpsize (float) – the size of the virtual LBP
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class used for inferences using a loopy version of importance sampling.

LoopyImportanceSampling(bn) -> LoopyImportanceSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Parameters: vlbpsize (float) – the size of the virtual LBP
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool

Class used for inferences using a loopy version of importance sampling.

LoopyImportanceSampling(bn) -> LoopyImportanceSampling : Parameters: : - bn (pyagrum.BayesNet) – a Bayesian network

  • Parameters: bn (IBayesNet)
  • Returns: A constant reference over the IBayesNet referenced by this class.
  • Return type: pyagrum.IBayesNet
  • Raises: pyagrum.UndefinedElement – If no Bayes net has been assigned to the inference.
  • Parameters:
    • X (int) – a node Id
    • nodeName (str) – a node name
  • Returns: the computed Shanon’s entropy of a node given the observation
  • Return type: float

Add all the nodes as targets.

  • Return type: None

Adds a new evidence on a node (might be soft or hard).

Add a marginal target to the list of targets.

  • Parameters:
    • target (int) – a node Id
    • nodeName (str) – a node name
  • Raises: pyagrum.UndefinedElement – If target is not a NodeId in the Bayes net
  • Return type: None

Change the value of an already existing evidence on a node (might be soft or hard).

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
    • val (intstr) – a node value or the label of the node value
    • vals (List [**float ]) – a list of values
  • Raises:
  • Return type: None

Computes and returns the current posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the current posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: UndefinedElement – If an element of nodes is not in targets
  • Returns: get the current running time in second (float)
  • Return type: float
  • Returns: the value of epsilon
  • Return type: float

Removes all the evidence entered into the network.

  • Return type: None

Clear all previously defined targets (marginal and joint targets).

As a result, no posterior can be computed (since we can only compute the posteriors of the marginal or joint targets that have been added by the user).

  • Return type: None

Remove the evidence, if any, corresponding to the node Id or name.

  • Parameters:
    • id (int) – a node Id
    • nodeName (int) – a node name
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Return type: None

Remove, if existing, the marginal target.

  • Parameters:
    • target (int) – a node Id
    • nodeName (int) – a node name
  • Raises:
    • pyagrum.IndexError – If one of the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network
  • Return type: None

Create a pyagrum.Tensor for P(target|evs) (for all instanciation of target and evs)

  • Parameters:
    • target (set) – a set of targets ids or names.
    • evs (set) – a set of nodes ids or names.

Warning

if some evs are d-separated, they are not included in the Tensor.

  • Returns: the set of nodes with hard evidence
  • Return type: set
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if some node(s) (or the one in parameters) have received evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a hard evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Parameters:
    • id (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if node has received a soft evidence
  • Return type: bool
  • Raises: pyagrum.IndexError – If the node does not belong to the Bayesian network
  • Returns: the scheme history
  • Return type: tuple
  • Raises: pyagrum.OperationNotAllowed – If the scheme did not performed or if verbosity is set to false
  • Parameters:
    • variable (int) – a node Id
    • nodeName (str) – a node name
  • Returns: True if variable is a (marginal) target
  • Return type: bool
  • Raises:
    • pyagrum.IndexError – If the node does not belong to the Bayesian network
    • pyagrum.UndefinedElement – If node Id is not in the Bayesian network

Perform the heavy computations needed to compute the targets’ posteriors

In a Junction tree propagation scheme, for instance, the heavy computations are those of the messages sent in the JT. This is precisely what makeInference should compute. Later, the computations of the posteriors can be done ‘lightly’ by multiplying and projecting those messages.

  • Return type: None
  • Return type: None
  • Returns: the criterion on number of iterations
  • Return type: int
  • Returns: the timeout(in seconds)
  • Return type: float
  • Returns: the approximation scheme message
  • Return type: str
  • Returns: the value of the minimal epsilon rate
  • Return type: float
  • Returns: the number of evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of hard evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of iterations
  • Return type: int
  • Returns: the number of soft evidence entered into the Bayesian network
  • Return type: int
  • Returns: the number of marginal targets
  • Return type: int
  • Returns: the number of samples between 2 stopping
  • Return type: int
  • Raises: pyagrum.OutOfBounds – If p<1

Computes and returns the posterior of a node.

  • Parameters:
    • var (int) – the node Id of the node for which we need a posterior probability
    • nodeName (str) – the node name of the node for which we need a posterior probability
  • Returns: a const ref to the posterior probability of the node
  • Return type: pyagrum.Tensor
  • Raises: pyagrum.UndefinedElement – If an element of nodes is not in targets
  • Parameters: eps (float) – the epsilon we want to use
  • Raises: pyagrum.OutOfBounds – If eps<0
  • Return type: None

Erase all the evidences and apply addEvidence(key,value) for every pairs in evidces.

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises: pyagrum.InvalidArgument – If one value is not a value for the node pyagrum.InvalidArgument If the size of a value is different from the domain side of the node pyagrum.FatalError If one value is a vector of 0s pyagrum.UndefinedElement If one node does not belong to the Bayesian network
  • Parameters: max (int) – the maximum number of iteration
  • Raises: pyagrum.OutOfBounds – If max <= 1
  • Return type: None
  • Parameters:
    • tiemout (float) – stopping criterion on timeout (in seconds)
    • timeout (float)
  • Raises: pyagrum.OutOfBounds – If timeout<=0.0
  • Return type: None
  • Parameters: rate (float) – the minimal epsilon rate
  • Return type: None
  • Parameters: p (int) – number of samples between 2 stopping
  • Raises: pyagrum.OutOfBounds – If p<1
  • Return type: None

Remove all the targets and add the ones in parameter.

  • Parameters: targets (set) – a set of targets
  • Raises: pyagrum.UndefinedElement – If one target is not in the Bayes net
  • Parameters: v (bool) – verbosity
  • Return type: None
  • Parameters: vlbpsize (float) – the size of the virtual LBP
  • Return type: None
  • Returns: the set of nodes with soft evidence
  • Return type: set
  • Returns: the list of marginal targets
  • Return type: list

The membership flag

Apply chgEvidence(key,value) for every pairs in evidces (or addEvidence).

  • Parameters: evidces (Dict [**str ,**Union [**int ,**str ,**List [**float ] ] ] or List [pyagrum.Tensor ]) – a dict of “name:evidence” where name is a string (the name of the variable) and evidence is an integer (an index) or a string (a label) or a list of float (a likelihood).
  • Raises:
  • Returns: True if the verbosity is enabled
  • Return type: bool