Skip to content

pyagrum.lib.dynamicBN

dynamic Bayesian Network are a special class of BNs where variables can be subscripted by a (discrete) time. See this notebook.

image

The purpose of this module is to provide basic tools for dealing with dynamic Bayesian Network (and inference) : modeling, visualisation, inference.

pyagrum.lib.dynamicBN.getTimeSlices(dbn, size=None)

Section titled “pyagrum.lib.dynamicBN.getTimeSlices(dbn, size=None)”

Try to correctly represent dBN and 2TBN as an HTML string

  • Parameters:
    • dbn (pyagrum.BayesNet) – a 2TBN or an unrolled BN
    • size (int or str) – size of the fig

pyagrum.lib.dynamicBN.getTimeSlicesRange(dbn)

Section titled “pyagrum.lib.dynamicBN.getTimeSlicesRange(dbn)”

get the range and (name,radical) of each variables

  • Parameters: dbn (gum.BayesNet) – a 2TBN or an unrolled BN
  • Returns: all the timeslice of a dbn : [‘0’,’t’] for a classic 2TBN, range(T) for a classic unrolled BN
  • Return type: Dict[str,List[T[str,str]]]

Check if bn is a 2 TimeSlice Bayesian network

  • Parameters: bn (pyagrum.BayesNet) – the Bayesian network
  • Returns: True if the BN is syntaxically correct to be a 2TBN
  • Return type: bool

pyagrum.lib.dynamicBN.plotFollow(lovars, twoTdbn, T, evs)

Section titled “pyagrum.lib.dynamicBN.plotFollow(lovars, twoTdbn, T, evs)”

plots modifications of variables in a 2TDN knowing the size of the time window (T) and the evidence on the sequence.

  • Parameters:
    • lovars – list of variables to follow
    • twoTdbn – the two-timeslice dbn
    • T – the time range
    • evs – observations

pyagrum.lib.dynamicBN.plotFollowUnrolled(lovars, dbn, T, evs, vars_title=None)

Section titled “pyagrum.lib.dynamicBN.plotFollowUnrolled(lovars, dbn, T, evs, vars_title=None)”

plot the dynamic evolution of a list of vars with a dBN

  • Parameters:
    • lovars – list of variables to follow
    • dbn – the unrolled dbn
    • T – the time range
    • evs – observations
    • vars_title – string for default or a dictionary with the variable name as key and the respective title as value.

pyagrum.lib.dynamicBN.realNameFrom2TBNname(name, ts)

Section titled “pyagrum.lib.dynamicBN.realNameFrom2TBNname(name, ts)”

@return dynamic name from static name and timeslice (no check)

pyagrum.lib.dynamicBN.showTimeSlices(dbn, size=None)

Section titled “pyagrum.lib.dynamicBN.showTimeSlices(dbn, size=None)”

Try to correctly display dBN and 2TBN

  • Parameters:
    • dbn (pyagrum.BayesNet) – a 2TBN or an unrolled BN
    • size (int or str) – size of the fig

pyagrum.lib.dynamicBN.unroll2TBN(dbn, nbr)

Section titled “pyagrum.lib.dynamicBN.unroll2TBN(dbn, nbr)”

unroll a 2TBN given the nbr of timeslices

  • Parameters:
    • dbn (pyagrum.BayesNet) – a 2TBN or an unrolled BN
    • nbr (int) – the number of timeslice
  • Returns: unrolled BN from a 2TBN and the nbr of timeslices
  • Return type: pyagrum.BayesNet