Skip to content

Counterfactual : the Effect of Education and Experience on Salary

Creative Commons LicenseaGrUMinteractive online version

This notebook is a ‘probabilistic’ (or noisy) version following the example from “The Book Of Why” (Pearl, 2018) chapter 8 page 251 (see the notebooks BoW-c8p* below).

import pyagrum as gum
import pyagrum.lib.notebook as gnb
import pyagrum.causal as csl
import pyagrum.causal.notebook as cslnb
import scipy.stats

In this example we are interested in the effect of experience and education on the salary of an employee, we are in possession of the following data:

Employé EX(u) ED(u) $S_{0}(u)$ $S_{1}(u)$ $S_{2}(u)$
Alice 8 0 86,000 ? ?
Bert 9 1 ? 92,500 ?
Caroline 9 2 ? ? 97,000
David 8 1 ? 91,000 ?
Ernest 12 1 ? 100,000 ?
Frances 13 0 97,000 ? ?
etc
  • EX(u)EX(u) : years of experience of employee uu. [0,20]
  • ED(u)ED(u) : Level of education of employee uu (0:high school degree (low), 1:college degree (medium), 2:graduate degree (high)) [0,2]
  • Si(u)S_{i}(u) [65k,150k] :
    • salary (observable) of employee uu if i=ED(u)i = ED(u),
    • Potential outcome (unobservable) if iED(u)i \not = ED(u), salary of employee uu if he had a level of education of ii.

We are left with the previous data and we want to answer the counterfactual question What would Alice’s salary be if she attended college ? (i.e. S1(Alice)S_{1}(Alice))

In this model it is assumed that an employee’s salary is determined by his level of education and his experience. Years of experience are also affected by the level of education. Having a higher level of education means spending more time studying hence less experience.

edex = gum.fastBN("Ux[-2,10]->experience[0,20]<-education[0,2]->salary[65,150];experience->salary<-Us[0,25]")
edex
G education education experience experience education->experience salary salary education->salary experience->salary Us Us Us->salary Ux Ux Ux->experience

However counterfactual queries are specific to one datapoint (in our case Alice), we need to add additional variables to our model to allow for individual variations:

  • Us : unobserved variables that affect salary.[0,25k]
  • Ux : unobserved variables that affect experience.[-2,10]
## no prior information about the individual (datapoint)
edex.cpt("Us").fillWith(1).normalize()
edex.cpt("Ux").fillWith(1).normalize()
## education level(supposed)
edex.cpt("education")[:] = [0.4, 0.4, 0.2]
## To have probabilistic results, we add a perturbation. (Gaussian around the exact values)
## we calculate a gaussian distribution
std = 1

Experience listens to Education and Ux : Ex=104×Ed+UxEx = 10 -4 \times Ed + Ux

edex.cpt("experience").fillFromDistribution(scipy.stats.norm, loc="10-4*education+Ux", scale=std)
edex.cpt("experience")
experience
education
Ux
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
0
-2
0.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.0000
-1
0.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.0000
0
0.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.0000
1
0.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.0000
2
0.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.0000
3
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.0000
4
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.0000
5
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.0000
6
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.0001
7
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39900.24200.05400.0044
8
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00450.05420.24310.40080.24310.0542
9
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00470.05730.25700.42380.2570
10
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00020.00630.07720.34590.5703
1
-2
0.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
-1
0.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
0
0.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
1
0.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.0000
2
0.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.0000
3
0.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.0000
4
0.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.0000
5
0.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.0000
6
0.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.0000
7
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.0000
8
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.0000
9
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.0000
10
0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.0001
2
-2
0.57030.34590.07720.00630.00020.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
-1
0.25700.42380.25700.05730.00470.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
0
0.05420.24310.40080.24310.05420.00450.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
1
0.00440.05400.24200.39900.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
2
0.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
3
0.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
4
0.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
5
0.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.00000.0000
6
0.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.00000.0000
7
0.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.00000.0000
8
0.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.00000.0000
9
0.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.00000.0000
10
0.00000.00000.00000.00000.00000.00000.00000.00000.00010.00440.05400.24200.39890.24200.05400.00440.00010.00000.00000.00000.0000

Salary listens to Education, Experience and Us : S=65+2.5×Ex+5×Ed+UsS = 65 + 2.5 \times Ex + 5 \times Ed + Us

edex.cpt("salary").fillFromDistribution(scipy.stats.norm, loc="65+2.51*experience+5*education+Us", scale=std)
gnb.showInference(edex)

svg

Our question was : What would Alice’s salary be if she attended college ?

To answer this counterfactual question we will follow the three steps algorithm from “The Book Of Why” (Pearl 2018) chapter 8 page 253 :

Use the data to retrieve all the information that characterizes Alice

From the data we can retrieve Alice’s profile :

  • Ed(Alice)Ed(Alice) : 0
  • Ex(Alice)Ex(Alice) : 8
  • S0(Alice)S_{0}(Alice) : 86k

We will use Alice’s profile to get UsU_s and UxU_x, which tell Alice apart from the rest of the data.

ie = gum.LazyPropagation(edex)
ie.setEvidence({"education": 0, "salary": "86", "experience": 8})
ie.makeInference()
newUs = ie.posterior("Us")
gnb.showProba(newUs)

svg

ie = gum.LazyPropagation(edex)
ie.setEvidence({"education": 0, "salary": "86", "experience": 8})
ie.makeInference()
newUx = ie.posterior("Ux")
gnb.showProba(newUx)

svg

gnb.showInference(edex, evs={"education": 0, "salary": "86", "experience": 8}, targets={"Ux", "Us"})

svg

Change the model to match the hypothesis implied by the query (if she had attended university) and then use the data that characterizes Alice to calculate her salary.

We create a counterfactual world with Alice’s idiosyncratic factors, and we operate the intervention:

## the counterfactual world
edexCounterfactual = gum.BayesNet(edex)
## we replace the prior probabilities of idiosynatric factors with potentials calculated earlier
edexCounterfactual.cpt("Ux").fillWith(newUx)
edexCounterfactual.cpt("Us").fillWith(newUs)
gnb.showInference(edexCounterfactual, size="10")
print("counterfactual world created")

svg

counterfactual world created
## We operate the intervention
edexModele = csl.CausalModel(edexCounterfactual)
cslnb.showCausalImpact(edexModele, "salary", doing="education", values={"education": "1"})
Ux Ux experience experience Ux->experience salary salary experience->salary education education education->experience education->salary Us Us Us->salary
Causal Model
P(salarydo(education))=Us,Ux,experienceP(Us)P(salaryUs,education,experience)P(experienceUx,education)P(Ux)\begin{equation*}P( salary \mid \text{do}(education)) = \sum_{Us,Ux,experience}{P\left(Us\right) \cdot P\left(salary\mid Us,education,experience\right) \cdot P\left(experience\mid Ux,education\right) \cdot P\left(Ux\right)}\end{equation*}


Explanation : Do-calculus computations
PyAgrum inline image
Impact

Alice’s salary if she attended college is lower than her actual salary, that’s because in the counterfactual world where she attended college she had less time to work hence her diminished salary.

We can prove it perfoming a complete inference in the counterfactual world. Since education has no parents in our model (no graph surgery, no causes to emancipate it from), an intervention is equivalent to an observation, the only thing we need to do is to set the value of education:

gnb.showInference(edexCounterfactual, targets={"salary", "experience"}, evs={"education": "1"}, size="10")

svg

Indeed the expected “experience” decreased.

The result (salary if she had attended college) is given by the formaula: salarysalary×P(salaryRealSalary=86k,education=0,experience=8,education=1)\sum_{salary} salary \times P(salary^* \mid RealSalary = 86k, education = 0, experience = 8, education^*=1) Where variables marked with an asterisk are inobservable.

formula, adj, exp = csl.causalImpact(edexModele, "salary", doing="education", values={"education": "1"})
gnb.showProba(adj)

svg

salary = edexModele.observationalBN()["salary"]
adj.expectedValue(lambda v: salary.numerical(v["salary"]))
82.41408794898389

S1(Alice)=82kS_1(Alice) = 82k Alice’s salary would be \82.4$ if she had attended college !

Section titled “S1(Alice)=82kS_1(Alice) = 82k S1​(Alice)=82k Alice’s salary would be \82.4$ if she had attended college !”

In pyAgrum, we can directly use a function that answers counterfactual queries using the previous algorithm.

help(csl.counterfactual)
Help on function counterfactual in module pyagrum.causal._causalImpact:
counterfactual(
cm: CausalModel,
profile: Union[Dict[str, int], type(None)],
on: Union[str, Set[str]],
whatif: Union[str, Set[str]],
values: Union[Dict[str, int], type(None)] = None
) -> pyagrum.Tensor
Determines the estimation of a counterfactual query following the the three steps algorithm from "The Book Of Why"
(Pearl 2018) chapter 8 page 253.
Determines the estimation of the counterfactual query: Given the "profile" (dictionary <variable name>:<value>),what
would variables in "on" (single or list of variables) be if variables in "whatif" (single or list of variables) had
been as specified in "values" (dictionary <variable name>:<value>)(optional).
This is done according to the following algorithm:
-Step 1-2: compute the twin causal model
-Step 3 : determine the causal impact of the interventions specified in "whatif" on the single or list of
variables "on" in the causal model.
This function returns the tensor calculated in step 3, representing the probability distribution of "on" given
the interventions "whatif", if it had been as specified in "values" (if "values" is omitted, every possible value of
"whatif")
Parameters
----------
cm: CausalModel
profile: Dict[str,int] default=None
evidence
on: variable name or variable names set
the variable(s) of interest
whatif: str|Set[str]
idiosyncratic nodes
values: Dict[str,int]
values for certain variables in whatif.
Returns
-------
pyagrum.Tensor
the computed counterfactual impact
cm_edex = csl.CausalModel(edex)
pot = csl.counterfactual(
cm=cm_edex,
profile={"education": 0, "experience": 8, "salary": "86"},
whatif={"education"},
on={"salary"},
values={"education": 1},
)
gnb.showProba(pot)

svg

We get the same result !

We get every potential outcome :

pot = csl.counterfactual(
cm=cm_edex, profile={"experience": 8, "education": "0", "salary": "86"}, whatif={"education"}, on={"salary"}
)
## pot contains the result for all value of education
for label in pot.variable("education").labels():
gnb.flow.row(f"for education = {label}", gnb.getProba(pot.extract({"education": label})))
for education = 0
PyAgrum inline image
for education = 1
PyAgrum inline image
for education = 2
PyAgrum inline image

What would Alice’s salary be if she had attended college and had 8 years of experience ?

Section titled “What would Alice’s salary be if she had attended college and had 8 years of experience ?”
pot = csl.counterfactual(
cm=cm_edex,
profile={"experience": 8, "education": 0, "salary": "86"},
whatif={"education", "experience"},
on={"salary"},
values={"education": 1, "experience": 8},
)
gnb.showProba(pot)

svg

if she attended college and had 8 years of experience Alice’s salary would be 91k !

Section titled “if she attended college and had 8 years of experience Alice’s salary would be 91k !”

In the previous query, Alice’s salary if she attended college was lower than her actual salary, that’s because in the counterfactual world where she attended college she had less time to work hence her diminished salary.

In this query, Alice’s counterfactual salary was higher than her actual salary (+5k corresponding to one level of education), that’s because in the counterfactual world Alice attended college and still had time to work 8 years, so her salary went up.

Some counterfactual can not be computer : With this profile, an experience of 10 is nont possible…

pot = csl.counterfactual(
cm=cm_edex,
profile={"experience": 8, "education": 0, "salary": "86"},
whatif={"experience"},
on={"salary"},
values={"experience": 10},
)
pot
salary
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
nannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannannan
twin = csl.counterfactualModel(
cm=csl.CausalModel(edex), profile={"experience": 8, "education": 0, "salary": "86"}, whatif={"experience"}
)
gnb.showInference(twin.observationalBN(), size="10", evs={"education": 0, "salary": "86"})

svg

Employé EX(u) ED(u) $S_{0}(u)$ $S_{1}(u)$ $S_{2}(u)$
Alice 8 0 86,000 ? ?
Bert 9 1 ? 92,500 ?
Caroline 9 2 ? ? 97,000
David 8 1 ? 91,000 ?
Ernest 12 1 ? 100,000 ?
Frances 13 0 97,000 ? ?
etc
def mean(p):
return sum([p.variable(0).numerical(i) * p[i] for i in range(p.variable(0).domainSize())])
def affCounterfactualForStudent(model, name, ex, ed, sa, value):
try:
s0 = csl.counterfactual(
cm=model,
profile={"experience": str(ex), "education": ed, "salary": str(sa)},
whatif={"education"},
on={"salary"},
values={"education": value},
)
print("{:5.1f}| ".format(mean(s0)), end="")
except:
print(" -- | ", end="")
def forStudent(model, name, ex, ed, sa):
print("| {:20}| {:2.0f}| s{:1}|{:3.0f}| | ".format(name, ex, ed, sa), end="")
for value in range(3):
affCounterfactualForStudent(model, name, ex, ed, sa, value)
print()
print("| Name | Ex|Ed | S | | s0 | s1 | s2 |")
print("----------------------------------- ----------------------")
d = csl.CausalModel(edex)
forStudent(d, "Alice", 8, 0, 86)
forStudent(d, "Bert", 9, 1, 92)
forStudent(d, "Caroline", 9, 2, 97)
forStudent(d, "David", 8, 1, 91)
forStudent(d, "Ernest", 12, 1, 100)
forStudent(d, "Frances", 13, 0, 97)
| Name | Ex|Ed | S | | s0 | s1 | s2 |
----------------------------------- ----------------------
| Alice | 8| s0| 86| | 87.5| 82.4| 78.2|
| Bert | 9| s1| 92| | 97.9| 92.9| 87.9|
| Caroline | 9| s2| 97| | 107.9| 102.9| 97.9|
| David | 8| s1| 91| | 96.2| 91.1| 86.1|
| Ernest | 12| s1|100| | 105.6| 100.6| 95.5|
| Frances | 13| s0| 97| | 97.9| 92.9| 87.8|

Note that, contraty to the notebook ‘BoW-c8p251*’, there is no equality between the input salary (86 for Alice) and the expected counterfactual if Alice had this salary (For alice, s0=87.5s0=87.5). Of course, this is due to noise that we introduced in the model.

Note also that this “noisy” version allow to answer that can not be answered in the deterministic version in ‘BoW-c8p251*’.