Aggregators
![]() | ![]() |
Aggregators are special type of nodes that includes a generic CPT for any numbers of parents.
pyAgrum proposes a list of such aggregators. Some of then are used below.
import pyagrum as gumimport pyagrum.lib.notebook as gnbmin_x = 0max_x = 15
bn = gum.BayesNet()l = [bn.add(gum.RangeVariable(item, item, min_x, max_x)) for item in ["a", "b", "c", "d", "e", "f"]]
gum.config["notebook", "histogram_line_threshold"] = 15nmax = bn.addMAX(gum.RangeVariable("MAX", "MAX", min_x, max_x))bn.addArc(l[0], nmax)bn.addArc(l[1], nmax)bn.addArc(l[2], nmax)nmin = bn.addMIN(gum.RangeVariable("MIN", "MIN", min_x, max_x))bn.addArc(l[3], nmin)bn.addArc(l[4], nmin)bn.addArc(l[5], nmin)nampl = bn.addAMPLITUDE(gum.RangeVariable("DELTA", "DELTA", 0, max_x - min_x))bn.addArc(nmax, nampl)bn.addArc(nmin, nampl)nmedian = bn.addMEDIAN(gum.RangeVariable("MEDIAN", "MEDIAN", min_x, max_x))for n in [l[0], l[1], l[2], l[3]]: bn.addArc(n, nmedian)## potential for median has a size : 16^5=2^20 double !nexists = bn.addEXISTS(gum.LabelizedVariable("EXISTS_0", "EXISTS"), 0)bn.addArc(l[0], nexists)bn.addArc(l[1], nexists)bn.addArc(l[2], nexists)nforall = bn.addFORALL(gum.LabelizedVariable("FORALL_1", "FORALL"), 1)bn.addArc(l[3], nforall)bn.addArc(l[4], nforall)bn.addArc(l[5], nforall)ncount = bn.addCOUNT(gum.RangeVariable("COUNT_1", "COUNT_1,", 0, 3), 1)bn.addArc(l[0], ncount)bn.addArc(l[1], ncount)bn.addArc(l[2], ncount)for nod in l: bn.cpt(nod).fillWith(1).normalize()gnb.showInference(bn, size="13")## dot | neato | fdp | sfdp | twopi | circo | osage | patchworkgum.config["notebook", "graph_rankdir"] = "LR"gnb.showInference(bn, size="13", evs={"MEDIAN": [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0]})gum.config.reset()## if the roots do not have uniform but random distributionfor nod in l: bn.generateCPT(nod)
gnb.showInference(bn, size="13")gnb.showInference(bn, size="13", evs={"MEDIAN": [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0]})
